3.21.44 \(\int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx\) [2044]

3.21.44.1 Optimal result
3.21.44.2 Mathematica [A] (verified)
3.21.44.3 Rubi [A] (verified)
3.21.44.4 Maple [A] (verified)
3.21.44.5 Fricas [A] (verification not implemented)
3.21.44.6 Sympy [C] (verification not implemented)
3.21.44.7 Maxima [A] (verification not implemented)
3.21.44.8 Giac [A] (verification not implemented)
3.21.44.9 Mupad [B] (verification not implemented)

3.21.44.1 Optimal result

Integrand size = 24, antiderivative size = 97 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\frac {3 \sqrt {1-2 x}}{14 (2+3 x)^2}+\frac {219 \sqrt {1-2 x}}{98 (2+3 x)}+\frac {2523}{49} \sqrt {\frac {3}{7}} \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-50 \sqrt {\frac {5}{11}} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

output
2523/343*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)-50/11*arctanh(1/11*5 
5^(1/2)*(1-2*x)^(1/2))*55^(1/2)+3/14*(1-2*x)^(1/2)/(2+3*x)^2+219/98*(1-2*x 
)^(1/2)/(2+3*x)
 
3.21.44.2 Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.85 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\frac {9 \sqrt {1-2 x} (51+73 x)}{98 (2+3 x)^2}+\frac {2523}{49} \sqrt {\frac {3}{7}} \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-50 \sqrt {\frac {5}{11}} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

input
Integrate[1/(Sqrt[1 - 2*x]*(2 + 3*x)^3*(3 + 5*x)),x]
 
output
(9*Sqrt[1 - 2*x]*(51 + 73*x))/(98*(2 + 3*x)^2) + (2523*Sqrt[3/7]*ArcTanh[S 
qrt[3/7]*Sqrt[1 - 2*x]])/49 - 50*Sqrt[5/11]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2* 
x]]
 
3.21.44.3 Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.08, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {114, 168, 174, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {1-2 x} (3 x+2)^3 (5 x+3)} \, dx\)

\(\Big \downarrow \) 114

\(\displaystyle \frac {1}{14} \int \frac {43-45 x}{\sqrt {1-2 x} (3 x+2)^2 (5 x+3)}dx+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{14} \left (\frac {1}{7} \int \frac {1793-1095 x}{\sqrt {1-2 x} (3 x+2) (5 x+3)}dx+\frac {219 \sqrt {1-2 x}}{7 (3 x+2)}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {1}{14} \left (\frac {1}{7} \left (12250 \int \frac {1}{\sqrt {1-2 x} (5 x+3)}dx-7569 \int \frac {1}{\sqrt {1-2 x} (3 x+2)}dx\right )+\frac {219 \sqrt {1-2 x}}{7 (3 x+2)}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{14} \left (\frac {1}{7} \left (7569 \int \frac {1}{\frac {7}{2}-\frac {3}{2} (1-2 x)}d\sqrt {1-2 x}-12250 \int \frac {1}{\frac {11}{2}-\frac {5}{2} (1-2 x)}d\sqrt {1-2 x}\right )+\frac {219 \sqrt {1-2 x}}{7 (3 x+2)}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{14} \left (\frac {1}{7} \left (5046 \sqrt {\frac {3}{7}} \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-4900 \sqrt {\frac {5}{11}} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )\right )+\frac {219 \sqrt {1-2 x}}{7 (3 x+2)}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2}\)

input
Int[1/(Sqrt[1 - 2*x]*(2 + 3*x)^3*(3 + 5*x)),x]
 
output
(3*Sqrt[1 - 2*x])/(14*(2 + 3*x)^2) + ((219*Sqrt[1 - 2*x])/(7*(2 + 3*x)) + 
(5046*Sqrt[3/7]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]] - 4900*Sqrt[5/11]*ArcTanh 
[Sqrt[5/11]*Sqrt[1 - 2*x]])/7)/14
 

3.21.44.3.1 Defintions of rubi rules used

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 114
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (IntegerQ[n] || 
 IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 
3.21.44.4 Maple [A] (verified)

Time = 3.38 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.66

method result size
risch \(-\frac {9 \left (146 x^{2}+29 x -51\right )}{98 \left (2+3 x \right )^{2} \sqrt {1-2 x}}+\frac {2523 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{343}-\frac {50 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{11}\) \(64\)
derivativedivides \(-\frac {50 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{11}-\frac {162 \left (\frac {73 \left (1-2 x \right )^{\frac {3}{2}}}{882}-\frac {25 \sqrt {1-2 x}}{126}\right )}{\left (-4-6 x \right )^{2}}+\frac {2523 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{343}\) \(66\)
default \(-\frac {50 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{11}-\frac {162 \left (\frac {73 \left (1-2 x \right )^{\frac {3}{2}}}{882}-\frac {25 \sqrt {1-2 x}}{126}\right )}{\left (-4-6 x \right )^{2}}+\frac {2523 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{343}\) \(66\)
pseudoelliptic \(\frac {55506 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \left (2+3 x \right )^{2} \sqrt {21}-34300 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \left (2+3 x \right )^{2} \sqrt {55}+693 \sqrt {1-2 x}\, \left (73 x +51\right )}{7546 \left (2+3 x \right )^{2}}\) \(75\)
trager \(\frac {9 \left (73 x +51\right ) \sqrt {1-2 x}}{98 \left (2+3 x \right )^{2}}-\frac {2523 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) \ln \left (\frac {3 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) x -5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right )+21 \sqrt {1-2 x}}{2+3 x}\right )}{686}+\frac {25 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right ) \ln \left (\frac {5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right ) x +55 \sqrt {1-2 x}-8 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right )}{3+5 x}\right )}{11}\) \(111\)

input
int(1/(2+3*x)^3/(3+5*x)/(1-2*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
-9/98*(146*x^2+29*x-51)/(2+3*x)^2/(1-2*x)^(1/2)+2523/343*arctanh(1/7*21^(1 
/2)*(1-2*x)^(1/2))*21^(1/2)-50/11*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^ 
(1/2)
 
3.21.44.5 Fricas [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.26 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\frac {17150 \, \sqrt {11} \sqrt {5} {\left (9 \, x^{2} + 12 \, x + 4\right )} \log \left (\frac {\sqrt {11} \sqrt {5} \sqrt {-2 \, x + 1} + 5 \, x - 8}{5 \, x + 3}\right ) + 27753 \, \sqrt {7} \sqrt {3} {\left (9 \, x^{2} + 12 \, x + 4\right )} \log \left (-\frac {\sqrt {7} \sqrt {3} \sqrt {-2 \, x + 1} - 3 \, x + 5}{3 \, x + 2}\right ) + 693 \, {\left (73 \, x + 51\right )} \sqrt {-2 \, x + 1}}{7546 \, {\left (9 \, x^{2} + 12 \, x + 4\right )}} \]

input
integrate(1/(2+3*x)^3/(3+5*x)/(1-2*x)^(1/2),x, algorithm="fricas")
 
output
1/7546*(17150*sqrt(11)*sqrt(5)*(9*x^2 + 12*x + 4)*log((sqrt(11)*sqrt(5)*sq 
rt(-2*x + 1) + 5*x - 8)/(5*x + 3)) + 27753*sqrt(7)*sqrt(3)*(9*x^2 + 12*x + 
 4)*log(-(sqrt(7)*sqrt(3)*sqrt(-2*x + 1) - 3*x + 5)/(3*x + 2)) + 693*(73*x 
 + 51)*sqrt(-2*x + 1))/(9*x^2 + 12*x + 4)
 
3.21.44.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 8.99 (sec) , antiderivative size = 1953, normalized size of antiderivative = 20.13 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\text {Too large to display} \]

input
integrate(1/(2+3*x)**3/(3+5*x)/(1-2*x)**(1/2),x)
 
output
3642408*sqrt(2)*I*(x - 1/2)**(11/2)/(4889808*(x - 1/2)**6 + 22819104*(x - 
1/2)**5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 9058973*(x - 1/2 
)**2) + 12864852*sqrt(2)*I*(x - 1/2)**(9/2)/(4889808*(x - 1/2)**6 + 228191 
04*(x - 1/2)**5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 9058973* 
(x - 1/2)**2) + 15144822*sqrt(2)*I*(x - 1/2)**(7/2)/(4889808*(x - 1/2)**6 
+ 22819104*(x - 1/2)**5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 
9058973*(x - 1/2)**2) + 5942475*sqrt(2)*I*(x - 1/2)**(5/2)/(4889808*(x - 1 
/2)**6 + 22819104*(x - 1/2)**5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/2 
)**3 + 9058973*(x - 1/2)**2) - 22226400*sqrt(55)*I*(x - 1/2)**6*atan(sqrt( 
110)*sqrt(x - 1/2)/11)/(4889808*(x - 1/2)**6 + 22819104*(x - 1/2)**5 + 399 
33432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 9058973*(x - 1/2)**2) + 10692 
00*sqrt(21)*I*(x - 1/2)**6*atan(sqrt(42)/(6*sqrt(x - 1/2)))/(4889808*(x - 
1/2)**6 + 22819104*(x - 1/2)**5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/ 
2)**3 + 9058973*(x - 1/2)**2) + 37037088*sqrt(21)*I*(x - 1/2)**6*atan(sqrt 
(42)*sqrt(x - 1/2)/7)/(4889808*(x - 1/2)**6 + 22819104*(x - 1/2)**5 + 3993 
3432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 9058973*(x - 1/2)**2) - 185185 
44*sqrt(21)*I*pi*(x - 1/2)**6/(4889808*(x - 1/2)**6 + 22819104*(x - 1/2)** 
5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 9058973*(x - 1/2)**2) 
+ 11113200*sqrt(55)*I*pi*(x - 1/2)**6/(4889808*(x - 1/2)**6 + 22819104*(x 
- 1/2)**5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 9058973*(x ...
 
3.21.44.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.13 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\frac {25}{11} \, \sqrt {55} \log \left (-\frac {\sqrt {55} - 5 \, \sqrt {-2 \, x + 1}}{\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}}\right ) - \frac {2523}{686} \, \sqrt {21} \log \left (-\frac {\sqrt {21} - 3 \, \sqrt {-2 \, x + 1}}{\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}}\right ) - \frac {9 \, {\left (73 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 175 \, \sqrt {-2 \, x + 1}\right )}}{49 \, {\left (9 \, {\left (2 \, x - 1\right )}^{2} + 84 \, x + 7\right )}} \]

input
integrate(1/(2+3*x)^3/(3+5*x)/(1-2*x)^(1/2),x, algorithm="maxima")
 
output
25/11*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x 
+ 1))) - 2523/686*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 
3*sqrt(-2*x + 1))) - 9/49*(73*(-2*x + 1)^(3/2) - 175*sqrt(-2*x + 1))/(9*(2 
*x - 1)^2 + 84*x + 7)
 
3.21.44.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.10 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\frac {25}{11} \, \sqrt {55} \log \left (\frac {{\left | -2 \, \sqrt {55} + 10 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {2523}{686} \, \sqrt {21} \log \left (\frac {{\left | -2 \, \sqrt {21} + 6 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {9 \, {\left (73 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 175 \, \sqrt {-2 \, x + 1}\right )}}{196 \, {\left (3 \, x + 2\right )}^{2}} \]

input
integrate(1/(2+3*x)^3/(3+5*x)/(1-2*x)^(1/2),x, algorithm="giac")
 
output
25/11*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5* 
sqrt(-2*x + 1))) - 2523/686*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x 
 + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 9/196*(73*(-2*x + 1)^(3/2) - 175*s 
qrt(-2*x + 1))/(3*x + 2)^2
 
3.21.44.9 Mupad [B] (verification not implemented)

Time = 1.58 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.73 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\frac {2523\,\sqrt {21}\,\mathrm {atanh}\left (\frac {\sqrt {21}\,\sqrt {1-2\,x}}{7}\right )}{343}-\frac {50\,\sqrt {55}\,\mathrm {atanh}\left (\frac {\sqrt {55}\,\sqrt {1-2\,x}}{11}\right )}{11}+\frac {\frac {25\,\sqrt {1-2\,x}}{7}-\frac {73\,{\left (1-2\,x\right )}^{3/2}}{49}}{\frac {28\,x}{3}+{\left (2\,x-1\right )}^2+\frac {7}{9}} \]

input
int(1/((1 - 2*x)^(1/2)*(3*x + 2)^3*(5*x + 3)),x)
 
output
(2523*21^(1/2)*atanh((21^(1/2)*(1 - 2*x)^(1/2))/7))/343 - (50*55^(1/2)*ata 
nh((55^(1/2)*(1 - 2*x)^(1/2))/11))/11 + ((25*(1 - 2*x)^(1/2))/7 - (73*(1 - 
 2*x)^(3/2))/49)/((28*x)/3 + (2*x - 1)^2 + 7/9)